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1. Summary

The linear and the nonlinear stability of disturbances

that propagate along the attachment line of a three-

dimensional boundary layer is considered. The spatially

evolving disturbances in the boundary layer are com-
puted by direct numerical simulation (DNS) of the

unsteady, incompressible Navier-Stokes equations. Dis-

turbances are introduced either by forcing at the inflow
or by applying suction and blowing at the wall. Quasi-

parallel linear stability theory and a nonparallel theory
yield notably different stability characteristics for distur-

bances near the critical Reynolds number; the DNS

results confirm the nonparallel theory. The simulation

results show that suction stabilizes the quasi-two-

dimensional attachment-line disturbances, and blowing

destabilizes these disturbances; these results qualitatively

agree with the theory. Previously, a weakly nonlinear
theory and computations revealed a high wave-number

region of subcritical disturbance growth, which is a

region where linear theory predicts the decay of small-

amplitude disturbances. More recent computations have

failed to achieve this subcritical growth. The present

computational results duplicate and explain both subcrit-

ically growing and decaying disturbances. Furthermore,

an explanation is provided for the previous theoretical

and computational discrepancy. The present results dem-

onstrate that steady suction can be used to stabilize dis-

turbances that otherwise grow subcritically along the
attachment line. However, true three-dimensional distur-

bances are more likely in practice and are more stable

than two-dimensional disturbances. Disturbances gener-

ated off (but near) the attachment line spread both away

from and toward the attachment line as they evolve. Fur-
thermore, the results show that suction stabilizes the dis-

turbances that develop off the attachment line. Clearly,

disturbances that axe generated near the attachment line

can supply energy to attachment-line instabilities, but
suction can be used to stabilize these instabilities.

Finally, symmetric and asymmetric disturbance growth
predicted by a two-dimensional-eigenvalue approach is

demonstrated to agree with the DNS results.

2. Introduction

On a swept wing, many instability mechanisms

occur that can lead to the catastrophic breakdown of lam-

inar to turbulent flow. Contamination along the leading

edge, Tollmien-Schlichting waves, stationary or travel-

ing cross-flow vortices, Taylor-Grnler vortices, or com-
binations of these modes are among the mechanisms that

can lead to this breakdown. For brevity, the discussion

here is limited to disturbances in the region of the attach-

ment line. For a more complete discussion of transition

to turbulence on swept wings, refer to the work of Tuttle

and Maddalon (1982), which includes a review of litera-
ture on laminar flow control, and of Reed and Saric

(1986), which includes a description of the known physi-
cal mechanisms associated with transition. Koerner et al.

(1987) present a German perspective on the laminariza-
tion of transport aircraft, and Gad-eI-Hak and Bushnell

(1991) discuss separation control on wings. The most

recent and comprehensive overview of experiments, the-

ory, and computations related to boundary-layer transi-

tion prediction and application to drag reduction is given

by Areal (1992).

Contamination at the leading edge results from tur-

bulence at a fuselage-wing juncture, which travels out
over the wing and contaminates otherwise laminar flow

on the wing. If the Reynolds number of the attachment-

line boundary layer is greater than some critical value,

then this contamination inevitably leads to turbulent flow

over the complete wing; this phenomenon has been dem-

onstrated by Pfenninger (1965), Maddalon et al. (1990),

and others. To correct this problem, Gaster (1965) placed

a bump on the leading edge to prevent the turbulent

attachment-line boundary layer from sweeping over the

entire wing. This bump must be shaped to create a fresh

stagnation point without generating a detrimental adverse
pressure gradient. Outboard of the bump, a new laminar

boundary layer forms.

Although the problem of turbulent flow that origi-

nates from the fuselage-wing juncture and contaminates

the entire wing can be avoided by using a device such as

the Gaster bump, a Reynolds number exists beyond

which disturbances generated by surface imperfections
or particulates on the wing, when combined with noise,

will eventually cause transition. If we assume that the

initiated disturbances are sufficiently small, hydrody-

namic stability theory could potentially be used to predict

the spatial amplification and the decay of the distur-

bances along the attachment line. Gaster (1967) first

examined this small-amplitude disturbance problem by

using acoustic excitation along the attachment line of a
swept cylinder model. Gaster fed the flow sine waves

with various frequencies that were detected by a hot-film
gauge on the attachment line. He noted that the recorded

oscillations had preferred frequency bands that changed
with tunnel speed and that this behavior was similar to

that of traveling-wave instabilities. From his measure-

ments, he concluded that the small-amplitude distur-
bances in an attachment-line boundary layer were stable

for momentum-thickness Reynolds numbers R 0 below
170 (the critical Reynolds number was outside the exper-

imental range); this value for the critical Reynolds
number is close to the theoretical value of 200, which

is obtained by assuming a two-dimensional (2D)

attachment-line boundary layer. Later, Cumpsty and



Head(1969)experimentallystudiedlarge-amplitudedis-
turbancesandturbulentflowalongtheattachmentlineof
aswept-wingmodel.Theyobservedthatlaminarflow is
stableto small-amplitudedisturbancesup to R 0 = 245
(which corresponds to the top speed of the tunnel).

Cumpsty and Head note that this observation remains
consistent with the theoretical value. At the same time,

Pfenninger and Bacon (1969) used a wing swept to 45 °

to experimentally study the attachment-line instabilities
in a wind tunnel that was capable of the larger speeds

necessary to obtain unstable disturbances. With hot

wires, they observed regular sinusoidal oscillations with

frequencies comparable with the most unstable 2D

modes of theory; these modes caused transition to occur

at R o - 240. A continued interest in transition initiated
near the attachment line of swept wings led Poll (1979,

1980) to conduct additional experiments. With the swept

circular cylinder model of Cumpsty and Head (1969),
Poll defined criteria for the onset of turbulence and iden-

tiffed the forms of the disturbances present in the flow.
Like Pfenninger and Bacon (1969), Poll observed distur-

bances that amplified along the attachment line. He noted

that no unstable modes were observed below R 0 = 230.

With an eigenvalue problem approach, Hall, Malik,

and Poll (1984) studied the linear stability of distur-
bances in the attachment-line boundary-layer flow called

"swept Hiemenz flow," which is illustrated in figure 2.1.
This 3D base flow is a similarity solution to the Navier-

Stokes equations; hence, its use is advantageous in stabil-

ity analyses. By assuming periodic disturbance modes

along the attachment line, Hall, Malik, and Poll (1984)
determined neutral curves with and without the presence

of steady suction and demonstrated that the attachment-

line boundary layer theoretically can be stabilized with
small amounts of suction. Hereafter the Hall, Malik, and

Poll (1984) approach is referred to as a "nonparallel

theory" because the study accounted for all linear terms,

including the wall-normal velocity component of the

base flow. Spalart (1989) used a direct numerical simula-

tion (DNS) approach, based on the fringe method, to

study the leading-edge contamination problem. Small-

amplitude disturbances were initialized with white noise.

Reynolds number test points were selected in both the
stable and unstable regime to assess the validity of the

nonparallel theory by Hall, Malik, and Poll (1984). At

the lower Reynolds number, all disturbances decayed; at

the higher number, at least one mode was amplified. The

critical Reynolds number predicted by Hall, Malik, and

Poll (1984) fell within the Reynolds number range used

by Spalart; the results of the simulations indicate good

qualitative agreement with the linear theory. Further-
more, Spalart (1989) demonstrated that classical
Hiemenz flow is stable to both linear and nonlinear

modes. Theofilis (1993a) performed DNS of the 2D iin-

U_

x

Figure 2.1. Sketch of attachment-line region of swept Hiemenz
flow.

ear disturbances that propagate along the attachment line

of swept Hiemenz flow; the DNS results agreed with
Hall, Malik, and Poll (1984) near branch II of the neutral

curve but were in disagreement near branch I. Theofilis

(1993a) attributed this disagreement between DNS and

theory to a lack of DNS grid resolution near branch I.

Small-amplitude DNS computations by Jimrnez et al.

(1990) led to results that agreed with the linear results of

Hall, Malik, and Poll (1984) for both branch I and branch
II of the neutral curve.

In summary, table 2.1 shows that both the experi-

ments and calculations agree (approximately) for the

critical Reynolds number at which small-amplitude dis-
turbances begin to amplify.

As the initial amplitude of the disturbances in the

attachment-line region become large, the experimental

results show considerable discrepancy between the onset

of transition and the linear critical Reynolds number.

Pfenninger and Bacon (1969) placed a wire upstream

of the attachment line and generated large-amplitude

Table 2. i. Experimental and Theoretical Critical Points for Linear
Instabilities in Attachment-Line Boundary Layers

Reference 1 Critical R0

Experiment

Cumpsty and Head 1969 | 245

Pfenninger and Bacon 1969 1 240Poll 1979, 1980 230

Theory

Hall, Malik, and Poll 1984 l 245



fluctuationsin theboundarylayer.Theyobservedtransi-
tionat R 0 = 155. In his study of leading-edge contami-
nation, Pfenninger (1965) discovered through in-flight

experiments that laminar flow could be obtained for

R 0 < 100; for R 0 > 100, leading-edge contamination
occurred. In their wind-tunnel experiments on a swept

airfoil, Gregory and Love (1965) found that for R 0 > 95
complete turbulence occurred. Flight tests by Gaster

(1967) showed that turbulent spots were first present at

R 0 > 88. Cumpsty and Head (1969) and later Poll (1985)
used a swept model in a wind tunnel to show that turbu-

lence was damped for R 0 < 99 and that the leading edge

was fully turbulent for R 0 > 114. Namely, for R 0 < 100,
disturbances are damped (turbulence decay), and for

R 0 > 100, the flow becomes turbulent (note the wide
gap between the linear critical Reynolds number of

R 0 = 245 and the turbulent-decay Reynolds number of

R0= 100). Table 2.2 summarizes the experimental
results which indicate the Reynolds number when

turbulence no longer decays and can fully contaminate
the attachment-line flow.

Table 2.2. Experimental Critical Points for Turbulence
Suppression in Attachment-Line Boundary Layers

Experiment Bypass R 0

Pfenninger 1965 100
Gregory and Love 1965 95-98
Gaster 1967 88-104

Cumpsty and Head 1969 100
Poll 1985 100

Hall and Malik (1986) strived to bridge the gap

between the nonparallel linear theory and bypass transi-

tion Reynolds numbers by studying large-amplitude dis-
turbances with weakly nonlinear theory and temporal

DNS. They note that subcritical disturbance growth is

observed at wave numbers that correspond to branch II of

the neutral curve. Consistent with the experimental

results, large-amplitude disturbances become unstable

before the linear critical point and approach equilibrium
states near branch I of the neutral curve. Both Jimrnez

et al. (1990) and Theofilis (1993b) failed to find this

region of subcritical growth with a temporal DNS code.
Jimrnez et al. (1990) contend that this subcritical growth

region does not exist.

Using asymptotic analysis, Hall and Seddougui

(1990) studied oblique waves and their interaction in

attachment-line flow at the large Reynolds number limit.

They note that close to the attachment line a small band
of destabilized oblique modes appear, interact with the

2D mode, and cause a breakdown of the 2D mode. In

addition, they note that oblique modes become less

important away from the attachment line and that low-

frequency modes become the dominant mechanism (i.e.,

stationary cross-flow modes). Lin and Malik (1994) per-
formed 3D linear computations which showed that, in

addition to the dominant 2D symmetric wave (studied

here), both asymmetric and symmetric modes can be

unstable depending on the Reynolds number. Hence, evi-
dence of 3D modes on or near the attachment line has

theoretically been demonstrated.

Bridging the understanding of the gap between the

Reynolds number region of linear instability (table 2.1)

and the lower Reynolds number region where turbulence

is suppressed (table 2.2) is important for nacelle and

swept-wing design. As a first step toward understanding

this inherently nonlinear 3D process, the present study

focuses on validating the linear theories, studying the

nonlinear subcritically growing disturbances, and exam-

ining 3D linear disturbances on and off the attachment
line.

In section 3, the physical and mathematical descrip-
tion of the problem is formulated. In sections 4 and 5, a

well-tested 3D spatial DNS code described by Joslin,

Streett, and Chang (1992, 1993) is used to independently

study both the linear and nonlinear instabilities that ini-
tiate and develop along the attachment line of a swept

Hiemenz flow. Regions near both branches (I and II) of

the neutral curve are investigated with DNS to simulta-

neously verify the form of the disturbances used in the

DNS and the nonparallel theory (eigenvalue approach) of
Hall, Malik, and Poll (1984) for infinitesimal distur-

bances. A resolution to the discrepancy between the

weakly nonlinear theory and supporting computations by

Hall and Malik (1986) and the two recent DNS computa-

tions is described in section 5. Furthermore, steady suc-

tion is used to control the nonlinear disturbance growth.
Finally, section 6 describes a newly developed 3D DNS

code (which has no approximation for periodicity) and

presents results for symmetric and asymmetric distur-

bances generated on and off (but near) the attachment
line.

3. Problem Formulation

In general, the velocities _fi = (_,_,(v) and the pres-

sure ,o are solutions of the incompressible, unsteady

Navier-Stokes equations. The instantaneous velocities _6

and the pressure ,o may be decomposed into base and

disturbance components as

-_u(x_,t) = _U(x_)+ _u(x,t)

fp(x_,t) P(x_) + p(x_,t)
(3.1)

where the base flow is given by the velocities
_U = (U, V, W) and the pressure P, and the disturbance



componentisgivenby thevelocities_u= (u,v,w) and
the pressurep. A Cartesian coordinate system

x_ = (x,y,z) is used in which x is aligned with the

attachment line, y is wall normal, and z corresponds to
the direction of flow acceleration away from the attach-
ment line.

3.1. Base Component

The mean, or base, flow of interest is referred to as

swept Hiemenz flow. Shown in figure 2.1, the fluid

comes obliquely down toward the wall; it turns away
from the attachment line into the +z-directions to form a

boundary layer. In the x-direction, the flow is uniform. In

the absence of sweep, U ° is equal to 0 and the flow
reduces to the 2D stagnation flow first described by

Hiemenz (1911). Where U o, V o, W ° are velocity scales,
and L is the length scale in the flow-acceleration direc-

tion Z, a length scale (factor of the boundary-la e__ick-

ness) is defined in the YZ-plane as 6 = _vL/Wo; a
Reynolds number, as R = Uot/V = 2.475R0; and a

transpiration constant, as _¢ = VoLI,f_ o, where _¢= 0
for the zero-suction case. If the attachment line is

assumed to be infinitely long, the velocities become

functions of Z and Y only, and the similarity solution can
be found.

The swept Hiemenz formulation was originally

described by Hall, Malik, and Poll (1984), where a linear

stability analysis of the flow was performed. The respec-

tive velocities and pressure for swept Hiemenz flow are

{ U, V, W, P} and the governing equations are given as

_u _v _w
a-2 + _ + _-2 = 0 (3.2)

au 8U _u
u _ + v -_-f+ w _-2

- (3.3)

ov ov av
u-_+ v _+ w a--2

1¢ 2v I
- (3.4)

Ow Ow Ow
u -_ + v -g-f + w a---2

l¢ :w
- + + +F (3.5)

where the equations are nondimensionalized with respect

to the attachment-line velocity U o, the length scale 6,
and the kinematic viscosity v.

A mean, or steady, solution of the Navier-Stokes

equations is sought that obeys the following conditions:

At the wall, we require that

u = w = 0 ]
(y 0) (3.6)

V= V o

and sufficiently far away from the wall,

(y --) o_) (3.7)

The velocity field for this similarity solution is

U(Y) = fi(Y) ]

V(Y) = I_,(Y) [

w(Y,Z) = z?v(Y) J

(3.8)

Substituting the nondimensional velocities (eqs. (3.8))

into the Z momentum equation (3.5) results in

Z^ d& Z ^2 OP Z d2&

R--'_v'_ R 2w -_+R 2 dy 2
(3.9)

As Y --_ _, the Z momentum equation (3.9) reduces to

Z OP
- (3.1 O)

R 2 3Z

Integrating equation (3.10), we can infer that the required

pressure form satisfying equations (3.7) is

1Z 2
P=P

o 2R 2
(3.11)

where Po is the constant pressure at the attachment line.

Substitute the velocity form (eqs. (3.8)) and the pres-

sure form (eq. (3.11)) into the Navier-Stokes equations

(eqs. (3.2)-(3.5)). Then by substituting the continuity

equation into the momentum equations and subtracting



theY and Z momentum equations, the following ordinary

differential equation system for _,_,,r% results:

_,+d_
= 0 (3.12)

d2t] ^ du

d Y 2 v -_ = 0
(3.13)

d3_' (d_')2 _, --d2_- I = 0

dr3 +t,d-'VJ - dyE

subject to the boundary conditions given by

(3.14)

d_
-- = 0
dY

¢v=O

(Y = O) (3.15)

d_
-- --+ - 1
dY

¢v--) l

( Y --> _) (3.16)

In the absence of sweep, equations (3.12)-(3.16) reduce

to the famous 2D stagnation flow as first described by

Hiemenz (1911).

Note that in the character of this similarity solution,
U and V are uniform along the attachment line and W

varies linearly with distance from the attachment line.

Because of the properties of this base flow, both tempo-

ral and spatial DNS approaches should yield equivalent

results in the 2D limit for small-amplitude disturbances.

However, the temporal DNS assumes that disturbances

are growing in time and that there exists a linear transfor-

mation from temporal growth to the realistic spatially

growing instabilities. Hall and Malik (1986) realized
subcritically growing instabilities with a temporal DNS

code, and hence the difference between the weakly non-

linear theory and the previous computations should not

be attributable to the temporal DNS approximation.

Although many previous studies have made use of the

temporal approach because of the computational savings

over the spatial formulation, the spatial and temporal for-

mulations are only related in the linear limit, with the

spatial formulation being more representative of the true

physical problem.

Ou Ou
at + (u + u)

+(V+v) 3U
OY

3.2. Disturbance Component

The disturbance portion of equations (3.1) is found

by solving the 3D incompressible Navier-Stokes equa-
tions in disturbance form as

+(V+v) 3u 3u_+(W+w)

_ 3p l(a2u+O2__._u+a2u] (3.17)
aX+Rt_-_X 2 ay 2 aZ 2)

by by by bv
as+(U +u) _+(V +v) _+(W +w)

"_ = - 3"--Y+ R_,aX 2 + ay----_+ "_Z2 ) (3.18)

Ow 3w 3w 3w
a.-7+(U +u) -_+(V +v) _+(W +w)

+ (v + v) aW 3W-_-f + w a--z

_ ap 1(32w+ a2._____w+a2w] (3.19)
aZ i'Rt_x 2 _y2 aZ 2)

with the continuity equation and boundary conditions

_u = 0 (Y = 0)]

_u---) 0 ( y --+ oo) I (3.20)

4. Attachment-Line Disturbances for 2D

Assumption

4.1. Form of Disturbances

In general, disturbances on and near a 3D

attachment-line region are of the 3D nature and require

solutions of the full 3D Navier-Stokes equations. How-
ever, as assumed in the original theoretical study by

Hall, Malik, and Poll (1984) and confirmed in the DNS

computations by Spalart (1989), a single mode in the

attachment-line region of swept Hiemenz flow can take
the form that had a linear variation of the chordwise

velocity component with distance from the attachment

line. In the present study, an alternate disturbance form is

first used. Namely, the velocity component w of the dis-
turbance and the transverse shear of the mean flow are

negligible; the disturbance becomes truly 2D along the

attachment line. This condition implies that w = 0 and
Ow/OZ = 0 on the attachment line. Although this sim-

plification is not consistent with the equations of motion,

it turns out that the neglected terms have little effect on

the qualitative behavior of the computed disturbances.

This assumption allows us to use a preexisting DNS

5



solver, which has been tested for 2D instabilities and 3D

spanwise periodic disturbances in 2D and 3D base flows.
This 2D assumption is arguably valid because the flow is

overwhelming dominated by the flow in the attachment-
line direction.

4.2. Numerical Methods of Solution

A well-tested 3D spatial DNS code described by

Joslin, Streett, and Chang (1992, 1993) is used to inde-
pendently study both the linear and nonlinear instabilities

that initiate and develop along the attachment line of a

swept Hiemenz flow.

In the attachment-line (X) direction, fourth-order

central finite differences are used for the pressure equa-

tion and sixth-order compact differences are used for the

momentum equations in the interior of the computational

domain. At the boundary and near-boundary nodes,
fourth-order forward and backward differences are used.

The discretization yields a pentadiagonal system for the

finite-difference scheme and a tridiagonal system for the

compact-difference scheme. The approximations can be

solved efficiently by appropriate backward and forward
substitutions.

In the wall-normal (Y) direction, the Chebyshev

series is used to approximate the disturbances at Gauss-

Lobatto collocation points. A Chebyshev series is used in

the wall-normal direction because it provides good reso-

lution in the high-gradient regions near the boundaries.

Furthermore, the use of as few grid points as possible

results in significant computational cost savings. In par-
ticular, the use of the Chebyshev series enables an effi-

cient pressure solver. Because this series and its

associated spectral operators are defined on [-1,1] and

the physical problem of interest has a truncated domain

[0,Ymax], a transformation is employed. Furthermore, a
stretching function is used to cluster the grid near the

wall. For further details on the properties and the use of

spectral methods, refer to Canuto et al. (1988).

For time marching, a time-splitting procedure was

used with implicit Crank-Nicolson differencing for nor-

mal diffusion terms; an explicit three-stage Runge-Kutta

(RK) method by Williamson (1980) was used for the

remaining terms. For details of the time-marching proce-

dure, refer to Joslin, Streett, and Chang (1992). The inter-

mediate RK velocities are determined semi-implicitly,

the pressure is found by solving the Poisson equation,

and the full RK stage velocities are obtained by correct-

ing the intermediate velocities with the updated pressure.

This system is solved three consecutive times to obtain

full time-step velocities.

To satisfy global mass conservation, an influence-

matrix method is employed and is described in some

6

detail by Streett and Hussaini (1991), Danabasoglu,
Biringen, and Streett (1990, t991), and Joslin, Streett,

and Chang (1992). For boundary-layer flow, four

Poisson-Dirichlet problems are solved for the discrete

mode that corresponds to the zero eigenvalue of the sys-

tem; single Poisson-Neumann problems are solved for all
other modes.

The buffer-domain technique introduced by Streett

and Macaraeg (1989) is used for the outflow condition.

As shown by Joslin, Streett, and Chang (1992) for the

flat-plate boundary-layer problem, a buffer length of

three disturbance wavelengths is adequate for traveling
waves. The disturbances are assumed to be from the dis-

crete spectrum, which exponentially decay with distance
from the wall. Both at the wall and in the far field, homo-

geneous Dirichlet conditions are imposed. The base flow

is used for the inflow boundary condition.

Finally, disturbances are forced as unsteady inflow
conditions or by unsteady suction and blowing of the

wall-normal velocity component through the wall. For

the former forcing, u and v profiles that are normalized

by Umax are generated by some theory (e.g., quasi-

parallel linear stability theory), and an amplitude is

imposed. For the later forcing, a harmonic source is

introduced, the amplitude is based on the wall-normal

velocity, and the wave profiles develop naturally in the

flow. A similar technique has been used by (among oth-

ers) Danabasoglu, Biringen, and Streett (1991) in their

study of flow control by suction and blowing in a chan-

nel flow. Although the disturbances may be generated by
random frequency input, the disturbances of interest here

are forced with known frequencies. Essentially, this dis-

turbance generator is an alteration to the no-slip bound-

ary conditions, which are conventionally used for the

wall condition in a viscous flow problem.

4.3. Linear Stability of Swept Hiemenz Flow

An assessment is made in regard to the value of the

Orr-Sommerfeld-Squire equations (OS) formulation in

attachment-line flow. Note that OS involves a quasi-

parallel flow assumption (i.e., V = 0) and that no ampli-

tude information is included in the theory. Figure 4. l

shows the neutral curves predicted with both the OS

solver and the linear theory of Hall, Malik, and Poll

(1984), which accounts for all linear terms (i.e., nonpar-

allel theory). The nonparallel theory allows for a devel-

oping boundary layer (i.e., V *: 0). The largest dis-

agreement in these results appears near the critical-point

region. Although accurate growth rates of disturbances

may not be obtained with OS as a result of the quasi-

parallel constraint, a good estimate of disturbance wave-

lengths can be obtained. For example, with R = 800 and

co = 0.1271, Hall, Malik, and Poll (1984) listed the wave



number o_ r = 0.3385. According to OS for the same Rey-
nolds number and frequency, the wave number

Otr= 0.3382 is obtained. Therefore, the terms that are
neglected in the governing OS equations, but retained in

the Hall, Malik, and Poll (1984) theory, primarily affect

the growth and decay rates of the instabilities. Obviously,

the spatial growth of the disturbances are of primary

importance in transition studies; however, the OS tool

can be used to quickly generate base disturbance quanti-

ties such as ccr =f(R,e0) and profiles. These quantities can
be used, for example, to determine the initial states for

simulations. Although beyond the scope of the present

study, this comparison indicates the accuracy of OS in

predicting attachment-line instabilities and demonstrates

how the nonparallel theory of Hall, Malik, and Poll

(1984) improved upon conventional OS.

Figure 4.1 and table 4.1 show the locations on the

Reynolds number-frequency plane where the DNS is

used to study the linear and nonlinear instabilities for the
attachment-line flow. The simulations are performed on

.20

.15

Co.10
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0 I

.4 1.6 x 10 3

/_ Subcritical nonlinear growth region of

Hall & Malik 1986
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× O-_" ..... O- ........
,- - ...... _

_i,o,

× DNS test points
--e-- Hall, Malik, & Poll 1984
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L I _ I , I , I , I ,

.6 .8 1.0 1.2 1.4

R

Figure 4.1. Neutral curves, region of subcritical disturbance
growth, and computation test points for DNS in attachment-line
boundary layer.

Table 4.1. Computational Test Points for DNS

g co

570
684.2
684.2
684.2
684.2
684.2

0.1249
0.1150
0.1200
0.1230
0.1249
0.1300

a grid of 661 points (=60 points per wavelength) along
the attachment line and 81 points in the wall-normal

direction. The far-field boundary is located at 505 from

the wall, and the computational length along the attach-

ment line is 216.565. This attachment-line length corre-

sponds to 11 wavelengths for R = 570 and co = 0.1249.

For the time-marching scheme, the disturbance wave-

length was divided into 320 time steps per period for

small-amplitude disturbances and into 2560 time steps

for large-amplitude disturbances (stability consider-

ations). The total Cray Y-MP computer time for a simu-

lation with a single processor was 1.5 hr for small-

amplitude disturbances and 12.0 hr for large-amplitude
disturbances.

Disturbances for the first simulations are forced

at the computational inflow with an amplitude of

A =0.001 percent (i.e., arbitrary small amplitude). A

Reynolds number R of 570 and a frequency co of 0.1249

correspond to the region of subcritical growth found by
Hall and Malik (1986), where disturbances are linearly
stable. Disturbances that evolve in both a base flow that

complements the quasi-parallel OS assumptions (V = 0)
and the full, swept Hiemenz flow are computed with

DNS. Figure 4.2 shows the computed disturbance decay

rate and the wavelength in the quasi-parallel flow agree

exactly with OS. The disturbance that propagates in the

complete swept Hiemenz flow closely retains the wave-

length predicted by OS but decays at a slower rate than

that predicted by OS. This change in decay rate is consis-

tent with the theory of Hall, Malik, and Poll (1984).

From this comparison, we find that the wall-normal

velocity V terms in the stability equations have a destabi-

lizing effect on the disturbance, which results in the mod-
ified neutral curve shown in figure 4.1. This destabilizing
influence of the wall-normal linear terms for attachment-

line boundary layers is consistent with previous studies

on flat-plate Blasius flow. (See EI-Hady and Nayfeh

1978; Gaster 1974.)

4.4. Neutral-Curve Region

Additional simulations were conducted in the

regions near branches I and II and in the critical Rey-

nolds number region to confirm the neutral curve pre-

dicted by the theory. In the region near branch II, the

disturbances were forced by suction and blowing at the

wall with an amplitude A of 0.001 percent and R = 684.2.

The growth and decay of various frequency waves are

compared with the neutral solution in figure 4.3. The
results are in agreement with the neutral curve predicted

theoretically by Hall, Malik, and Poll (1984), computed

by Spalart (1989), and computed more recently by
Jimdnez et al. (1990) and Theofilis (1993a, 1993b). This

suggests that the chordwise strain contribution, which

7
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Figure 4.3. Simulated two-dimensional disturbance amplitudes

near neutral curve of attachment-line boundary layer at
R ; 684.2.
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for Test 1Table 4.2. Stable or Unstable Regions Points of Table 4.

R to Region

u 0 570 0.1249 Stable

684.2 0.1150 Unstable

684.2 0.1200 Unstable

684.2 0.1230 Stable

-5 684.2 0.1249 Stable
684.2 0.1300 Stable

I+_ _ _ _ _ _r v _ B,ufferdomain

10 _ _ '- -_ differ in the subcritical behavior of disturbances. To

0 50 100 150 200 250 resolve this discrepancy, the computed results from the

X

Figure 4.2. Simulated two-dimensional disturbance evolution in

parallel (V = 0) and nonparallel attachment-line basic flows for

R = 570 and to = 0.1249. Samples at Y= 0.86.

was neglected from the 2D DNS solver is insignificant

for linear computations near the neutral curve.

From the simulation results of 2D small-amplitude

disturbances at the test points listed in table 4.1, the

resulting stability or instability of those regions are sum-

marized in table 4.2.

4.5. Nonlinear Growth of Subcritical Disturbances

Although the theoretical and computational results

agree for the growth and decay properties of linear dis-

turbances along the attachment line, the nonlinear results

present study are compared with the previous studies of

Hall and Malik (1986), Jim6nez et al. (1990), and

Theofilis (1993b). In addition, the effects of suction on

unstable modes are documented.

Figure 4.4 shows the evolution of the fundamental

wave, the mean-flow distortion, and the harmonics from

a simulation forced at the inflow with a large amplitude

A of 12 percent for R = 570 and m = 0.1249. After a tran-

sient region of adjustment, the fundamental wave

encounters subcritical growth, which is in agreement

with the weakly nonlinear theory. Contours of instanta-

neous streamwise (U + u) and wall-normal (V + v) veloc-

ities are shown in figure 4.5. Because the disturbance

amplitude is sufficiently large, notable distortions in the

base flow are observed as a result of the unsteady distur-

bance forcing. Figure 4.5 clearly shows a wavelike flow

structure in the attachment-line direction. For this flow,

instantaneous and mean streamwise and wall-normal

8
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Figure 4.5. Contours of streamwise U and wall-normal V velocities

for subcritically growing disturbance in attachment-line bound-

ary layer at R = 570 and _0 = 0.1249.

Figure 4.6. Streamwise velocity profiles of nonlinear, subcritically

growing disturbance in attachment-line boundary layer at R =

570 and co = 0.1249.

velocity profiles at various attachment-line locations are
shown in figures 4.6 and 4.7, respectively. The results in
figure 4.6 indicate that spatially varying distortions at
fixed time to the base flow are observed, but the mean

flow (U + Uo), which consists of the base flow and the
mean-flow distortion components, shows no noticeable
deviation from the base-flow solution. However, the

results in figure 4.7 indicate that both the spatially vary-
ing and mean wall-normal profiles undergo distortions
because of the disturbance. To help understand what
effect these mean distortions would have on linear stabil-

ity calculations, figure 4.8 shows the wall-normal com-
ponent of the base flow that corresponds to R = 570 and

9
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Figure 4.7. Wall-normal velocity profiles of nonlinear, subcriti-

cally growing disturbance in attachment-line boundary layer at
R = 570 and to = 0.1249.

670. A comparison of these base-flow profiles with the

mean flow of figure 4.7 shows that a large-amplitude dis-

turbance produces a distortion to the base flow, which

causes an effective increase in the base Reynolds num-

ber. Evidently, a shift in Reynolds number alone does not

account for the growing mode (based on linear stability

analysis with the same frequency).

To determine if nonlinear disturbance growth can be

found above branch II of the neutral stability curve and to

ensure that the subcritical growth obtained both by Hall

and Malik (1986) and by DNS shown in figure 4.4 did

not artificially result from the disturbance forcing at the

inflow boundary, the next sequence of simulations is

forced by suction and blowing at decaying modes that

10
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Figure 4.8. Wall-normal component of base flows corresponding
to R = 570 and 670.

correspond to R = 684.2 and co = 0.1249 and are repeated

at R = 684.2 and to = 0.1230 (closer to branch II of the

neutral curve). For the later test point, the initial ampli-

tudes of the disturbances for each simulation were incre-

mentally increased. The resulting disturbance evolutions

are shown in figures 4.9 and 4.10 (normalized by the ini-

tial amplitude to show the relative growth effects). The

otherwise linearly decaying mode becomes amplified

because of the nonlinear forcing. Interestingly, as the ini-

tial amplitude is increased, the fundamental wave

receives a smaller percentage of the total energy injected

into the flow because other modes receive a larger per-

centage of the energy.

Finally, the nonlinear simulation results of large-

amplitude initial disturbances broaden the neutral curve

toward higher frequencies and lower critical Reynolds

numbers, similar to the influence of nonparallel effects

on linear disturbance growth. This postulation is

sketched in figure 4.11, where the nonlinear-influence

curve is artificial and serves to show how the now "neu-

tral curve" might shift to reflect that certain nonlinear

modes are growing while others are decaying. Note, that

this influence of single nonlinear disturbance growth

does not resolve the discrepancy in Reynolds number

between linear growth (table 2.1) and bypass (table 2.2)

regions.

At this point it is not clear why the results of Jim6nez

etal. (1990) do not agree with either the present DNS

results or the previous theory and computations of Hall

and Malik (1986); however, from the present initial

amplitudes required to achieve this subcritical growth,



lul

.50-

.40-

.30-

.20-

A, percent

-*- 20
-_- 10
---_-- 5

--o-- 0.001

(

.10 , , I L I I , I

0 SB 50 100 150 200

X

Figure 4.9. Nonlinear disturbance growth in attachment-line

boundary layer at R = 684.2 and to = 0.1249. Disturbances nor-

malized by initial amplitudes.

.20

.15

to .10

.05

¢ ;_-0- 0 --0- -0.-- - -0"

Unstable as Eo increases
4

_ Unstable

Stable
- -o- - Nonlinear influence
-- Hall, Malik, & Poll 1984

, I L I _ I , I _ I

.6 .8 1.0 1.2 1.4

R

0 i I

.4 1.6 x 103

Figure 4.11. Impact of large-amplitude disturbances on region of

disturbance growth.

.4-

.3-

lul

.2-

A, percent

--0-- 8

---*-- 3
---o-- 0.001

.1 t._, I , I i I , I

0 SB 50 100 150 200

X

Figure 4.10. Nonlinear disturbance growth in attachment-line

boundary layer at R = 684.2 and co = 0.1230. Disturbances nor-

malized by initial amplitudes.

lul

×10-6
8-

0.2
.1 /

o /
-_- -.1 /

6 - --o - -.2 /

/
/

/
/

-- / ///

/ //
///.

0 SB 50 100 150 200

X

Figure 4.12. Control of linear disturbance growth in attachment-

line boundary layer at R = 684.2 and co = 0.1150 with suction.

Theofilis (1993b) apparently could not force a distur-

bance with sufficient amplitude to realize this nonlinear

growth.

4.6. Effect of Suction and Blowing on Disturbance

Finally, the effect of both steady suction and steady

blowing on linear and nonlinear disturbance growth is

documented. The amplification of linear disturbances

influenced by suction and blowing is shown in fig-

ure 4.12 for R = 684.2 and to = 0.1150. The results indi-

cate that suction stabilizes the disturbance and blowing

significantly destabilizes the disturbance. The effects of

suction and blowing on disturbances computed by DNS

are in agreement with the theory of Hall, Malik, and Poll

(1984) for small-amplitude disturbances.
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For the nonlinear subcritical case near branch II, the

effects of steady suction on the disturbance amplitude are

shown in figures 4.13 and 4.14 for the largest amplitude

disturbances of figures 4.9 and 4.10. The results further

demonstrate that small amounts of suction can be used to

stabilize disturbances that otherwise nonlinearly grow

near branch II of the neutral curve. Larger forcing ampli-

tudes are required to obtain nonlinear growth with Rey-

nolds numbers and frequencies farther away from the

neutral curve, and, as expected, larger amounts of suction

are required to stabilize these disturbances.

To control the subcritical growth of disturbances,

various levels of suction are employed. Although Hall

and Malik (1986) noted that suction makes the flow more

susceptible to subcritical disturbance growth, figure 4.15

shows that this subcritical disturbance growth shown in

figure 4.4 can be controlled by using small levels of suc-

tion. If the 2D DNS results mimic the actual 3D behavior

of the flow, then large-amplitude disturbances generated

on the attachment line can be controlled with a sufficient

amount of suction.

5. Attachment-Line Disturbances for Quasi-3D

Assumption

In section 4, an alternate disturbance form was used,

where the velocity component w of the disturbance and

the transverse shear of the mean flow were neglected and

the disturbance became 2D along the attachment line.

This implied that w = 0 and aw/aZ = 0 on the attach-

ment line. Although this simplification was not consis-

tent with the equations of motion, the results of this

section (which retain the previously neglected terms)

show that results from the 2D assumption yield similar

qualitative behavior of the computed disturbances.
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5.1. Form of Disturbances

In general, disturbances on and near a 3D

attachment-line region are of the 3D nature, requiring

solutions of the full 3D Navier-Stokes equations. How-

ever, as assumed in the original theoretical study by Hall,

Malik, and Poll (1984) and confirmed in the DNS com-

putations by Spalart (1989), a single mode in the attach-
ment-line region of swept Hiemenz flow can take the
form

u = u(x,y,t) |

v = v(x,y,t)

w = w(x,y,t) ×Z

(5.1)

This form permits the velocity component w of the dis-
turbance to have a linear variation with distance from the

attachment line, which is the same as the base flow. (See

eq. (3.2).) Whereas the amplitude of w varies linearly

with distance from the attachment line, the components u
and v remain uniform with distance from the attachment

line. The subsequent computations by Jimrnez et al.

(1990) and Theofilis (1993a, 1993b) used this same dis-
turbance form and showed linear results near the neutral

curve which were in agreement with the Hall, Malik, and

Poll (1984) theory and nonlinear results that failed to

achieve the subcritical growth predicted by the weakly

nonlinear theoretical and computational results of Hall

and Malik (1986).

A final series of simulations is performed with the

linear variance form described by equations (5.1) and

used by Hall and Malik (1986) for their theory and com-

putations and used in subsequent computations by
Jimrnez et al. (1990) and Theofilis (1993a, 1993b). This

dependence of equations (5.1) requires solutions of the

following momentum and continuity equations:

_u Ov
_ + _ + w : 0 (5.2)

_u 3u _u bU
_-7+(U+u) _-_+(V+v) _+v b--f

_ bp l(b2u b2u] (5.3)

by bv (V+v) bv bv
b-7+ (tl +") b-2 + _+_ b-f

bY + R_,bX 2 by 2)
(5.4)

bw bw bw bW
_t+(U+u) _-x+(V +v) _-_+v b---f

0z R ,bx2 br2)
(5.5)

The results for the disturbance described by equa-
tions (5.2)-(5.5), hereafter referred to as "3D distur-

bances" in the rest of section 5, are shown to qualita-

tively agree with a 2D solution and the theory of Hall and

Malik (1986) provided the disturbance pressure gradient

is of a particular form in the flow-acceleration direction.

5.2. Numerical Methods of Solution

The numerical procedure as described in section 4.2

is used for the present system of equations. The distur-

bances are forced as unsteady inflow conditions. The

profiles u and v that are normalized by u are generated by

some theory (e.g., quasi-parallel linear stability theory),

and an amplitude is imposed.

5.3. 3D Nonlinear Subcritical Disturbances

Note that the results in section 4.4 are achieved

through the 2D simplification. In this section, the 3D

instabilities are determined by solving equations (5.2)-

(5.5). Note, that by using the disturbance form given in

equations (5.1), the Z dependence of the disturbance is

removed from the theoretical-computational problem,
except for a partial derivative of the pressure in

equation (5.4). In fact, it is from this observation that we
find a difference between the studies of Hall and Malik

(1986) and Jim6nez et al. (1990). It is apparent from the

manuscripts that different assumptions were made for the

pressure behavior in the flow-acceleration direction.

In the studies of Hall, Malik, and Poll (1984) and

Hall and Malik (1986), the disturbance pressure was a

function of (X,Y) only; this leads to

b.__p.p= 0 x Z (5.6)
bz

in equation (5.4). With this pressure form, a series of

simulations was conducted by solving equations (5.2)-

(5.5). Figure 5.1 shows the fundamental mode and first
harmonic of the attachment-line direction velocity com-

ponent compared with the previous 2D mode (fig. 4.2).

In agreement with the 2D qualitative behavior, the 3D

mode undergoes subcritical growth. Quantitative differ-

ences are apparent and expected due to the addition of

equation (5.4) and the modified continuity equation. The

energy content with distance along the attachment line is

probably a better measure of total disturbance growth or
decay. Figure 5.2 shows this disturbance energy for vari-

ous subcritical Reynolds numbers. For a fixed initial

13
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Figure 5.3. Nonlinear subcritical energy of 3D disturbances in

attachment-line boundary layer at R = 570 and to = 0.1249.

Figure 5.1. Nonlinear subcritical growth of 2D and 3D distur-

bances in attachment-line boundary layer at R = 570 and
to = 0.1249.
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Figure 5.2. Nonlinear subcritical energy of 3D disturbances in

attachment-line boundary layer with Reynolds number at
to = 0.1249.

disturbance amplitude, it is clear that the disturbance

energy increases with distance along the attachment line,

in agreement with the theory and computations of Hall

and Malik (1986) and with the earlier 2D modal approxi-

mation. These results support the conjecture shown in

figure 4.11; namely, for a fixed large initial amplitude,

there are distinct regions of disturbance growth and

decay which can be described by "neutral curves."

In the study of Jimtnez et al. (1990), the disturbance

pressure was assumed to be of the same form as that of

the base flow. Namely, pressure varied with the square
of distance from the attachment line in the flow-

acceleration direction. They arrived at a pressure gradi-

ent in the flow-acceleration direction which took the

form

t)---_P= -1 x Z (5.7)
az

Using this pressure form, a final simulation was con-

ducted and the results are presented in figure 5.3 with the

results from equation (5.6) as the flow-acceleration pres-

sure gradient. This simple difference in pressure leads to

a decaying mode instead of nonlinear subcritical growth.

Hence, the discrepancy between the Jimtnez et al. (1990)

computations and the computations and weakly nonlin-

ear theory of Hall and Malik (1986) lie with an effective

pressure source difference.

This discrepancy presented in figure 5.3 leads to an

additional puzzling question: Which pressure form

should be used for future simulations? The correct pres-

sure form for the disturbances studied by Hall and Malik

(1986) and Jimtnez et al. (1990) is demonstrated in sec-

tion 6 by looking at the pressure solution of a fully 3D

simulation.

6. Attachment-Line Disturbances for Full 3D

Modes

6.1. Form of Disturbances

In this section, the disturbances are forcibly imposed

into the boundary layer by unsteady suction and blowing

with the wall-normal velocity component through the

wall (harmonic-source generators). An equal amount of

mass injected by blowing is extracted by suction so that

14



zero net mass is added to the boundary layer. A similar

technique has been used by (among others) Danabasoglu,

Biringen, and Street (1991) in their study of periodic

control by suction and blowing. Although the distur-

bances may be generated by random frequency input, the
disturbances of interest here are forced with known fre-

quencies. Essentially, this disturbance generator is an

alteration to the no-slip boundary conditions which are

conventionally used for the wall condition in a viscous

flow problem.

6.2. Numerical Methods of Solution

In the attachment-line (X) direction, fourth-order

central finite differences are used for the pressure equa-
tion and sixth-order compact differences are used for the

momentum equations in the interior of the computational

domain. At the boundary and near-boundary nodes,
fourth-order forward and backward differences are used.

The discretization yields a pentadiagonal system for the

finite-difference scheme and a tridiagonal system for the

compact-difference scheme. The approximations can be

solved efficiently by appropriate backward and forward
substitutions.

In both the wall-normal (Y) and flow-acceleration

(Z) directions, the Chebyshev series is used to approxi-
mate the disturbances at Gauss-Lobatto collocation

points. In particular, the use of the Chebyshev series

enables an efficient pressure solver. Because this series

and its associated spectral operators are defined on [-1,1]

and the physical problem of interest has a truncated

domain [0,Ymax] and [-Zmax,Zmax], transformations are

employed. Furthermore, stretching functions are used to

cluster the grid near both the wall and the attachment
line.

The same time-marching scheme and inflow and

outflow boundary conditions as described in section 4.2
are used in the 3D DNS code.

To efficiently solve the resulting Poisson problem,

the tensor-product method of Lynch, Rice, and Thomas

(1964) is used. The discretized form of the Poisson equa-

tion for the pressure is

(Lx®l®I+I®Ly®I+l®l®Lz) p = RHS (6.1)

where p is the desired pressure solution; the fight side of

the equation RHS results from the time-splitting proce-

dure; I is the identity matrix; L x is the attachment-line-

directed central finite-difference operator; Ly and L z are
the wall-normal-directed and flow-acceleration-directed

spectral operators; and ® denotes a tensor product. By

decomposing the operators Ly and L z into their respec-
tive eigenvalues and eigenvectors, we find

Ly = QAyQ -1 l

L z SAz S-1

(6.2)

where Q and S are the eigenvectors of Ly and L z, Q-I

and S -1 are inverse matrices of Q and S, and Ay and A z

are the eigenvalues of Ly and L z. The solution procedure
reduces to the following sequence of operations to deter-

mine the pressure p:

P* = (I®Q-i ® S-I)RHS -I , ]
p_ = (Lx®l®I+l®Ay®I+I®I®Az) p (6.3)

p = (I_Q®S)p*

Because the number of grid points in the attachment-line

direction is typically an order of magnitude larger than
the wall-normal and flow-acceleration directions, the

operator L x is much larger than both Ly and L z. Because
L x is large and has a sparse pentadiagonal structure and

because Ay and A z influence the diagonal only, an LU
decomposition is performed for the second stage of equa-
tions (6.3) once, and forward and backward solves are

performed for each time step of the simulation. The first

and third steps of the pressure solver in equations (6.3)

involve matrix multiplications.

To obtain the attachment-line-directed operator L x,
central finite differences are used. To find the wall-

normal Ly and flow-acceleration L z operators, the fol-
lowing matrix operations are required:

I G D = I GL
Ly = GL ylJy G

L z = IGLDzOz IGL

(6.4)

where Dy is a spectral wall-normal derivative operator

for the stretched grid, D z is the spectral derivative opera-
tor that is grind clustered in the attachment-line region,

and I)y and D z are the derivative operators with the first
and last rows set to 0. The interpolation matrix GIGL oper-
ates on variables at Gauss-Lobatto points and transforms

them to Gauss points; the interpolation matrix I GL per-
forms the inverse operation. The spectral operators are

described in detail by Canuto et al. (1988) and Joslin,

Street, and Chang (1993).

The operators { Lx,Ly,Lz}, the eigenvalue matrices• • -1 -1
{A,,Az}, the elgenvector matrices {Q,Q ,S,S },
and'the influence matrix are all mesh-dependent matrices
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andmustbe calculatedonly once. The wall-normal

direction spectral operators and RHS are given in Joslin,

Street, and Chang (1993); the same form is used for the
flow-acceleration direction.

Both at the wall and in the far field, homogeneous

Dirichlet conditions are imposed. Homogeneous
Dirichlet and Neumann conditions have been used in the

flow-accelerated direction. With either condition, the dis-

turbance will develop in the same manner along the

attachment line, provided that the boundaries are suffi-

ciently far from the attachment-line region. The base

flow is used for the inflow boundary condition.

6.3. Quasi-2D Symmetric Disturbances

The spatial evolution of three-dimensional distur-

bances is computed by direct numerical simulation,

which involves the solution to the unsteady, nonlinear,

three-dimensional Navier-Stokes equations. The simula-

tions are performed on a grid of 661 points (--60 points
per wavelength) along the attachment line, 81 points in

the wall-normal direction, and 25 points in the flow-

acceleration direction. The far-field boundary is located

at 505 from the wall, the computational length along the

attachment line is 216.568, and the flow-acceleration
boundaries are located +1005 from the attachment line.

For the time-marching scheme, the disturbance wave-

length was divided into 320 time steps per period. The

total Cray Y-MP computer time for a simulation with a

single processor was approximately 25 hr. As shown in

figure 6.1, the parameter regions of interest consist of a

region of linear disturbance growth, a region of linear
disturbance decay (which is the region of nonlinear, sub-

critical disturbance growth identified by Hall and Malik

(1986)), the upper and lower branches of the neutral

curve, and the critical region predicted by the nonparallel

theory of Hall, Malik, and Poll (1984).

This study begins by validating the simulation

results for infinitesimal disturbances with hydrodynamic

stability theory with the special case of a frozen base

flow. Nonparallel terms (i.e., the wall-normal base flow
components) for the equations are included in the simula-

tion, and the instabilities are compared with the frozen-

flow disturbance properties. Next, aspects of disturbance

development on and near the attachment line are com-

pared for quasi-two-dimensional and point-source har-

monic source generators with the theory of Hall, Malik,

and Poll (1984). The effects of suction on the instabilities

are documented. Conclusions are drawn and the impor-

tance of this study on the global problem of attachment-

line instability is ascertained. Finally, future directions

for continuing the study of the problem of instabilities in

attachment-line boundary layers are suggested.
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Figure 6.1. Neutral curves, region of subcritical disturbance
growth, and computational test points for DNS in attachment-
line boundary layer.

The nonparallel theory of Hall, Malik, and Poll

(1984) outlined the stable and unstable regions for infini-

tesimal disturbances. In a segment of the subcritical

region, large-amplitude disturbances were found by Hall

and Malik (1986) to exhibit nonlinear amplification. The

results for two-dimensional, spatial direct numerical sim-

ulation in section 4 confirmed this subcritical growth

phenomenon. In this section, R = 570 and to = 0.1249,

parameters in the subcritical region, are used in the study
of the evolution of small-amplitude three-dimensional

disturbances. The results are compared with linear stabil-

ity theory and previous two-dimensional results.

To compare with the two-dimensional theory and

previous simulations, a quasi-two-dimensional distur-
bance is initiated in the three-dimensional flow. At best,

this disturbance is an approximation to a true two-

dimensional disturbance mode. To generate this two-
dimensional disturbance, a harmonic source is used that

is elongated (-44.2 < Z < 44.2) in the flow-acceleration

direction. This disturbance-forcing method is compara-

ble with using a vibrating ribbon to generate two-

dimensional disturbances for wind-tunnel experiments.

The qualitative features of a disturbance generated by the

harmonic source with a small amplitude (e.g., A = 0.001

percent) are shown in figure 6.2. The disturbance evolu-

tion is viewed from above and along the attachment line.

The wave travels along the attachment line without sig-
nificant three-dimensional features. However, because

the base flow is accelerating away from the attachment

line (in the +Z-directions), wave spreading occurs with
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Figure 6.2. Three-dimensional traveling wave in attachment-line

boundary layer for R = 570 and to = 0.1249.

distance from the harmonic source, and the rate of

spreading increases with distance along the attachment
line.

Quasi-two-dimensional simulation results for both a
quasi-parallel base flow (i.e., V = 0) and the full swept
Hiemenz flow are compared with linear stability theory,
and the results are shown in figure 6.3. The amplitude,
decay rate, and wavelength of disturbances simulated
with the quasi-parallel flow are in very good quantitative
agreement with the results of two-dimensional linear
stability theory. This agreement suggests that in this
parameter region the elongated harmonic source can
approximate a two-dimensional disturbance along the
attachment line. Figure 6.3 also shows that the full swept
Hiemenz base flow destabilizes disturbances due to the

inclusion of the velocity component V. This destabilizing
feature is consistent with the results reported in the
two-dimensional nonparallel studies by Hall, Malik, and
Poll (1984).

To further demonstrate the two-dimensional nature

of the disturbance generated with the elongated harmonic
source, figure 6.4 shows the attachment-line results com-
pared with results at distances of 135 and 355 off the

x10-6

2[- 4 -_-os
--- DNS

1

u 0

-1

n

-2 V r- -1
0 SB 50 100 150 200 250

X

(b) Three-dimensional attachment-line basic flow.

Figure 6.3. Simulated two-dimensional disturbance evolution for
R = 570 and to = 0.1249.

attachment line. The evolution patterns are identical out
to near 355, where small deviations are observed. This
observation implies that the elongated harmonic source is
generating primarily two-dimensional waves and that the
attachment-line velocity component is dominant (i.e., the
amplitude of the velocity component w of the disturbance
is too small to modify the dominant component u). Fig-
ure 6.5 shows velocity profiles for u and w at Z = 135 and
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Figure 6.4. How-acceleration variation of simulated two-
dimensional disturbance evolution in three-dimensional
attachment-line basic flow for R = 570 and to = 0.1249.

355. Although only small differences are found with

velocity components u, the velocity components w are in
strong disagreement. This disagreement results from the

variation of that component with distance from the

attachment line. Note that the velocity w is an order of

magnitude smaller than the velocity u; this is the reason

for the good agreement between the velocity u on the

attachment line with the same components off the attach-

ment line. Furthermore, although no symmetry assump-

tion is made, flow symmetry about the attachment line is

realized with this particular harmonic-source generator.

In figures 6.6 and 6.7, three-dimensional simulation

results on the attachment line are compared with previ-
ous two-dimensional simulation results in section 4.3.

Figure 6.6 clearly shows a significant amplitude disparity
between the two- and three-dimensional results. Because

the three-dimensional simulations contain a flow-

acceleration velocity component w, an additional degree

of freedom is available to disperse (or absorb) energy.

Hence, the harmonic-source generator forces less energy

into the attachment-line velocity component u. The nor-
malized two-dimensional and three-dimensional results

are also shown in figure 6.6 to enable a growth-rate

comparison. The disturbance is slightly more destabi-
lized in the full three-dimensional flow than in the two-

dimensional flow approximation. Similar qualitative dif-

ferences are evident when disturbance growth rates in

quasi-parallel flow are compared with those in nonparal-

lel flows. Finally, the disturbance velocity profiles at

X = 100 are presented in figure 6.7. The shapes of the
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Figure 6.5. Three-dimensional disturbance velocity profiles at
X = 100 near attachment line for R = 570 and to = 0.1249.

compared profiles agree well. The results demonstrate

that two-dimensional simulations capture the qualitative

features of the true three-dimensional flow; in addition,

because a third degree of freedom (w,z) is not present in

the two-dimensional simulations, amplitude information

is overpredicted and growth-rate information is under-

predicted. These results suggest that much larger distur-

bances are required to generate subcritical disturbance

growth in the three-dimensional flow (if subcritical

growth is possible in the three-dimensional flow).

In the nonparallel theory of Hall, Malik, and Poll
(1984), the z-dependent form for the flow-accelerated

velocity component w was a key assumption, which led

to a system of ordinary differential equations rather than
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three-dimensional attachment-line boundary layer for R = 570

and co = 0.1249.

partial differential equations. This assumed form is

equivalent to the base-flow form: W --) WoZ. Figure 6.8

shows the maximum amplitudes of the flow-accelerated

velocity component at X = 100 and away from the

attachment line. For the present harmonic source, this

z-dependent disturbance form assumed by Hall, Malik,

and Poll (1984) is realized in the simulation near the

attachment line; however, because the harmonic source

has a finite length, the disturbance behavior near the

harmonic-source ends deviates from the expected z

dependence. The harmonic-source ends cause a perturba-

tion to the flow that is shown both in figure 6.8 and in a

Y
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Figure 6.7. Two- and three-dimensional disturbance velocity pro-

files at X = 100 normalized by component u in attachment-line

boundary layer for R = 570 and to = 0.1249.

top view of the flow in figure 6.9. Similar difficulties in

disturbance initialization can be found in the experi-

ments; however, the core of the test region (i.e., the

attachment line) is not significantly contaminated by

these end effects.

We address the question in section 5.3 with respect

to the pressure forms used by Hall and Malik (1986) and

Jim6nez et al. (1990) by comparing with the pressure

from the present 3D simulation; this comparison will

provide confirmation of either subcritical growth or

decay. At an arbitrary distance downstream of the source,

the pressure is shown in figure 6.10, where the maximum

pressure is shown as a function of distance from the
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Figure 6.9. Evolution of flow-accelerated disturbance velocity w in

attachment-line boundary layer at R = 570 and to = 0.1249.

Disturbance generated between X = 16 and 19.

20

attachment line. The results clearly show that the pres-

sure is uniform for this type of disturbance, except at the

regions where forcing is discontinued (which is

expected). This uniformity supports the pressure form of

Hall and Malik (1986) and thus supports the develop-

ment of nonlinear subcritical growing disturbances.

6.4. Neutral-Curve Region

In parameter regimes near the neutral curve, finite

Reynolds number disturbance modes are studied near the

upper branch, the lower branch, and the critical point.

Specifically, the simulations are conducted (in the

regions shown in fig. 6.1) to verify the nonparallel theory

of Hall, Malik, and Poll (1984).

For the upper branch, three simulations are per-

formed to identify the neutral curve. The harmonic-

source disturbance generator is used to generate the

quasi-two-dimensional modes on the attachment line.

For the Reynolds number R = 684.2, the three-

dimensional simulation results are shown in figure 6.11

for various frequencies. The upper branch of the neutral

curve is shown at the frequency to = 0.1263; the nonpar-

allel theory of Hall, Malik, and Poll (1984) and the two-

dimensional simulations (fig. 4.3) report that the upper

branch is between to = 0.1230 and 0.1240. Although the

two- and three-dimensional results yield different upper

branch locations, the relative error, or difference, in the

locations is only about 2 percent. This difference may be

attributed to the assumption that a two-dimensional



lul

lO x 1o-6

9 -

8

I
7 L-

O)

-+- 0.1270
...... .1263

6 SB I I I t I I
0 25 50 75 100 125 150 175

X

Figure 6.11. Disturbance growth and decay near branch I1 of curve

of neuU'al stability for attachment-line boundary layer at

R = 684.2.

lul

10 _x 10-6
R

-÷- 590
..... 585

-----e- 583

II

6 g.I I t I , I ,

0 SB25 50 75 100 125 150 175

X

Figure 6.12. Disturbance growth and decay near critical point of

curve of neutral stability for attachment-line boundary layer at

to = 0.1104.

disturbance is generated from a three-dimensional har-

monic source or that the three-dimensional base flow

does not support pure two-dimensional disturbances.

Near the critical-point region of the neutral curve,

computations are made to verify the critical point pre-

dicted by the nonparallel theory. Digitized data from the

results of Hall, Malik, and Poll (1984) indicate that

R = 580 and to = 0.1104 is the point farthest upstream at

which an infinitesimal, two-dimensional disturbance

becomes unstable. Although this value is not the exact

critical point, this Reynolds number-frequency combina-

tion lies on the neutral curve in the region of the critical

point. The computational results for disturbances in this

critical-point region are shown in figure 6.12. The three-

dimensional results suggest that for the frequency of

o3 = 0.1104, the Reynolds number for neutral stability is

slightly greater than R = 585; this represents a difference

of less than 1 percent between the nonparallel theory and

the simulation results.

Finally, figure 6.13 shows results from simulations

performed in the vicinity of the lower branch of the neu-

tral curve. The results indicate that for R = 684.2, the

lower branch of the neutral curve is approximately at

co = 0.082, which agrees with nonparallel theory.

For practical engineering purposes, the nonparallel

theory of Hail, Malik, and Poll (1984) agrees with the

three-dimensional simulation results in the limit of infin-

itesimal quasi-two-dimensional disturbances that propa-

gate along the attachment line.
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Figure 6.13. Disturbance growth and decay near branch I of curve

of neutral stability for attachment-line boundary layer at

R = 684.2.

6.5. Three-Dimensional Disturbances

To generate three-dimensional disturbances, the

flow-acceleration length of the harmonic-source genera-

tor is reduced to enable a more direct transfer of energy

to the velocity component w. Disturbances computed

in the parameter regime described by R = 570 and

21



xl0-6
5

lul

Harmonic source length
[ o -44.2 < Z< 44.2

4 '- _t" × -20.4 < Z< 20.4

/i't_t,\ + -13.4<Z<13.4
3

1-

i

0 SB25 50 75 100 125 150 175
X

Figure 6.14. Evolution of disturbances in attachment-line bound-
ary layer at R = 570 and co = 0.1249, where disturbances are
generated with harmonic sources of various lengths.

lul

x 10-7
8

4

2
0

I

SB 50

Harmonic source length

o 27.8 <Z<0

I 1 , I

100 150 200
X

-A.L.

Figure 6.15. Evolution of disturbance velocity u on attachment
line and top view of three-dimensional traveling wave in
attachment-line boundary layer at R = 570 and co= 0.1249.

CO= 0.1249 are shown in figure 6.14. By reducing the

length of the original harmonic source from

-44.2 < Z < 44.2 to -20.4 < Z < 20.4, the generated

disturbance is very similar to the previous quasi-two-
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Figure 6.16. Maximum pressure variation as function of flow-
acceleration direction at X = 100 in attachment-line boundary
layer at R = 570 and (o = 0.1249.

dimensional disturbance. However, by reducing the
harmonic-source length to - 13.4 < Z < 13.4 (one-third

the original length), the generated disturbance is signifi-
cantly stabilized on the attachment line. The evolution no

longer represents a quasi-two-dimensional disturbance

and becomes more comparable with a harmonic point
source. Thus we conclude that the two-dimensional

instabilities are apparently dominant on the attachment
line.

Next, a harmonic-source generator is used to intro-
duce a disturbance off the attachment line to determine

the direction and rate of disturbance growth or decay.

The results of a disturbance generated with a harmonic
source located at -27.8<Z<0.0 are shown in

figure 6.15. The top view indicates that the harmonic

source generates a local almost circular pattern that

evolves along the attachment line with spreading both
away from and toward the attachment line. These results

suggest that the flow-accelerated shear away from the

attachment line has insufficient strength to deter the
spreading of the disturbance toward the attachment line.

Figure 6.15 also shows that the maximum-amplitude

velocity u on the attachment line initially undergoes a

slight decay and then continues to grow. The amplitude

information along the attachment line suggests that an
unstable mode is observed in the simulations; however,

the top view of the flow field indicates that this amplifi-

cation is caused by the wave-spreading phenomenon.

The combined amplitude and visual results imply that a
disturbance generated off (but near) the attachment line

can supply energy to the attachment region by the

spreading of the wave pattern. In turn, this energy supply
may feed an unstable mode on the attachment line.

Similar to the pressure comparison in figure 6.10, the
pressure for the disturbance near but off the attachment

line is plotted in figure 6.16. Clearly, a zero pressure



gradientin the flow-acceleration direction does not occur
for a 3D harmonic wave packet. The difference in pres-

sure form suggests that for 3D disturbances subcritical

growth is not assured based on 2D simulation results and
that a full 3D nonlinear study would be warranted.

For the final simulation in this section, R = 684.2 and

co = 0.1150 are used because the nonparallel theory pre-
dicts that infinitesimal two-dimensional disturbances are

unstable on the attachment line. The disturbance is gen-

erated with a harmonic source which is positioned at

-35.6 < Z < -6.6 (i.e., completely off the attachment

line). The top view of the computed disturbance is shown

in figure 6.17. As before, the disturbance evolves prima-

rily along the attachment line, and the wave spreads both

away from and toward the attachment line. Streamlines
and vortex lines (determined by computing the trace of

velocity and vorticity vectors) are overlaid on the distur-

bance pattern. These lines yield valuable information on
the mean flow field properties near the attachment line.

The disturbance packet follows the streamlines, and the

packet spreads and evolves near the attachment line in a

manner similar to packets in flat-plate boundary-layer
flows. These results and the quasi-two-dimensional

results suggest that the behavior of instabilities in the

region on and near the attachment line can be expected to

be qualitatively similar to flat-plate boundary-layer insta-

bilities. Supporting this postulation, the trace of velocity
vectors in the wall-normal-flow-acceleration plane are

shown at the top of figure 6.17. The resulting pattern in a

reference frame moving with the disturbance velocity is

reminiscent of Kelvin cat's eyes, which are observed in

the two-dimensional fiat-plate boundary-layer flow.

The amplitudes of the disturbance at various Z loca-

tions are shown in figure 6.18. The component u of the

disturbance has a peak amplitude initiated at Z = -20.4

and undergoes a strong decay along the attachment line,

although the mode is shown to be unstable on the attach-

ment line. The spread of the disturbance toward the
attachment line indicates that the disturbance on the

attachment line is either unstable or merely gaining

energy at a rate comparable with the spreading rate.
However, because the theory for two-dimensional distur-
bances indicates that the disturbance is unstable on the

attachment line, some combination of energy transfer

due to spreading and linear growth is likely. However,
the more stable three-dimensional modes may rob the

two-dimensional mode of enough energy to prevent flow

transition along the attachment line. Note that the veloc-

ity components u at all Z locations indicate growth with

distance along the attachment line, except for the loca-

tion Z = -20.4, where decay is indicated. Spreading

causes the other locations Z to receive energy, but
because the location Z = -20.4 was the location of maxi-

mum initial amplitude and the disturbance propagates

along and away from the attachment line, the location of

the maximum velocity is no longer at Z = -20.4. This

results in an observed decay at the location Z = -20.4.

Figure 6.19 shows velocity profiles at various locations
of Z at X = 100. As energy is transferred because of this

spreading, the profiles near the attachment line undergo a
distortion near the wall. This distortion leads to multiple

maximums and profile shapes that deviate from the linear

theory.

6.6. Asymmetric Disturbances

Recently, Lin and Malik (1994, 1995) have shown

with theory that both symmetric and asymmetric instabil-

ities are present in incompressible and compressible

swept Hiemenz flow. In this section, the 3D DNS is used
to validate the theoretical prediction of asymmetric

modes.

The solutions posed by Lin and Malik (1994) took
the form

{u,v,w}(X,Y,Z,t) = {u,v,w}(Y,Z) e i(ctX-cot) (6.5)

Substituting this form into the Navier-Stokes equations

leads to a system of partial differential equations in the
flow-acceleration and wall-normal directions. The

boundary conditions for the boundaries Z took the fol-

lowing forms:

Symmetric:

_u _gv
- - w = 0 (Z=0) (6.6)

_z

{u,v}(Y,Z) = {u,v}(Y,-Z)_

w(Y,Z) = -w{Y,-Z} J
(Z = Zmax) (6.7)

Asymmetric:

_W
u = v - - 0 (Z=0) (6.8)

Oz

{u,v}(V,Z) = -{u,vI(Y,-Z) _

w(Y,Z) = w{Y,-Z} J
(Z = Zmax) (6.9)

For the theory, Lin and Malik (1996) showed that as long

as Zma x > 2, domain independent convergence was
achieved.

For the simulations, the entire attachment-line region
is included within the domain, and therefore, the bound-

ary conditions at Z = 0 are not needed. Although the

boundary conditions at ±Zma x were used to validate the
theory, it was demonstrated that simple Dirichlet condi-

tions are sufficient for boundary conditions provided

_Zma x is far-removed from the disturbance field.
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Figure 6.17. Top view of disturbance evolution in attachment-line boundary layer at R = 684.2 and co = 0.1150, where disturbance is gener-
ated with harmonic source near attachment line.

The theory suggests that the most unstable modes

follow the sequence: symmetric (S 1), asymmetric (AI),

symmetric ($2), et cetera, where the growth rates of

modes are S1 >A1 >$2>A2>$3 .... without excep-

tion. This theory and modal growth ordering were

recently confirmed by A. Fedorov, of Moscow Institute

of Physics and Technology, using an asymptotic theory.
Although according to the Fedorov analysis, the valida-

tion of a single mode implies the validation of all modes,
here the first two dominant modes are simulated.
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Figure 6.18. Evolution of disturbance generated off attachment

line in attachment-line boundary layer at R = 684.2 and

to = 0.1150. Harmonic source generated at -35.6 < Z < -6.6.

From the results of the Lin-Malik technique, the

wave number and growth rate for the first three modes at

R = 700 and co = 0.1017 are shown in table 6.1. The sim-

ulation of a pure mode will prove difficult because the

discrimination of the wave numbers would be difficult.

The theoretical results suggest that the previous simula-

tions of "discrete modes" are in fact spectrally rich. To

use suction and blowing to generate the S 1 mode in the

absence of the $2 mode would prove difficult. However,

a discriminating factor can be attributed to the phase rela-

tion between the symmetric versus asymmetric modes

across the attachment line and in the flow-acceleration

direction. This difference is obvious from the boundary

conditions for Z = 0 in equations (6.6) and (6.8). Hence,

simulations could discriminate between symmetric and

asymmetric modes.
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Figure 6.19. Three-dimensional disturbance velocity profiles at

X = 100 near attachment line for R = 684.2 and to = 0.1150.

Table 6.1. Symmetric and Asymmetric Modes for Swept Hiemenz

Flow at R = 700 and co = 0.1017

Mode _r _i

SI 0.27481152 -0.226959 x 10 -2

AI 0.27515243 -0.105988 x 10 -2

$2 0.27548905 +0.148157 x 10 -3

The simulations are performed on a grid of

661 points (=60 points per wavelength) along the attach-

ment line, 81 points in the wall-normal direction, and

25 points in the flow-acceleration direction. The far-

field boundary is located at 408 from the wall, the
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Figure 6.20. Attachment-line symmetric disturbance (SI) growth
and Lin and Malik (1994) theory for three-dimensional
attachment-line basic flow for R = 700 and to = 0.1017.
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Figure 6.22. Effect of suction and blowing on growing quasi-2D
symmetric disturbance in attachment-line boundary layer at
R= 684.2 and to = 0.1230.
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Figure 6.21. Flow-acceleration asymmetric disturbance (A1)
growth and Lin and Malik (1994) theory for three-dimensional
attachment-line basic flow for R = 700 and to = 0.1017.

computational length along the attachment line is 2168,
and the flow-acceleration boundaries are located +1008.

The total Cray C-90 computer cost for this simulation is

13 hr for 8 periods in time. Separately, the symmetric
(S1) and the asymmetric mode (A1) are forced by using

suction and blowing as before with the symmetric and

three-dimensional disturbances. The phase of the A1
mode in the flow-acceleration direction was determined

with the Lin-Malik technique. Although the boundary

conditions at +Zma x were used to validate the theory, it
was demonstrated that simple Dirichlet conditions are

sufficient for boundary conditions provided +_Zmax is
far-removed from the disturbance field.

In figures 6.20 and 6.21, the simulation results are

compared with the wave growth rate described by the

theory (listed in table 6.1). The agreement is remarkably

good when considering the differences between the DNS

and assumed solution form in equation (6.5). For the the-

ory, the A I mode has a constant wave number and

growth rate in the flow-acceleration direction, whereas

the simulations have a truly three-dimensional distur-

bance, and therefore, spectral differences in the
Z-direction are inevitable in this 3D flow. To make the

comparison shown in figure 6.20, the results for the sim-

ulation are averaged over the flow-acceleration stations:
Z = 0 and +6. These stations were selected because, as

figure 6.17 shows, the streamlines very near the attach-

ment line are essentially aligned with the 2D attachment-
line flow. The stations Z = +6 permit a cancellation of

any opposing flow-acceleration effects.

6.7. Effects of Suction and Blowing on Distur-
bance Growth

By changing the boundary conditions in equa-

tion (3.1) from K = 0, steady suction (_¢ < 0) or blowing
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Figure 6.23. Effect of suction on evolution of disturbance gener-
ated off attachment line in attachment-line boundary layer at
R=684.2 and to = 0.1150. Harmonic source generated at
-35.6 < Z < -6.6.

(r > 0) can be used to alter the growth or decay of dis-

turbances in the attachment-line boundary-layer flow.

Near the upper branch of the neutral curve, R = 684.2 and

co = 0.1230 are used for the simple test case of linear sta-

bility with suction and blowing. Shown in figure 6.22,

the results of the quasi-two-dimensional disturbance

generated with the elongated harmonic source

(-44.2 < Z < 44.2) indicate that suction stabilizes the

disturbance and blowing destabilizes the disturbance;

this agrees with the theoretical results by Hall, Malik,
and Poll (1984) and the two-dimensional simulation

results in figure 4.12.

The results for the three-dimensional disturbance

generated with a harmonic source of length
-35.6 < Z < -6.6 at R = 684.2 and to = 0.1150 indicated

growth in the energy on the attachment line (fig. 6.18).

Because two-dimensional disturbances at this Reynolds

number and frequency are linearly unstable on the attach-

ment line, the presence of energy should lead to distur-

bance growth. Computations with suction are used to
evaluate disturbance stabilization on and near the attach-

ment line. Clearly, figure 6.23 shows that suction stabi-
lizes the disturbances located both on and off the

attachment line.

6.8. Region of Subcritical Disturbance Growth

The weakly nonlinear theory and Fourier-based sim-

ulations by Hall and Malik (1986) and the results of sec-

tion 5.3 reveal that a region of nonlinear subcritical

growth exists for large-amplitude disturbances that
evolve on the attachment line of a three-dimensional

boundary-layer flow. Because the 3D results shown in

figure 6.6 indicate that much larger harmonic-source

amplitudes are required to initiate large-amplitude distur-

bances and because of the large computational costs

involved to resolve this nonlinear phenomenon, three-
dimensional simulations of large-amplitude instabilities

were not attempted in this paper.

7. Concluding Remarks

In this study, results are presented for the spatial
direct numerical simulations (DNS) of the two-

dimensional (2D) and three-dimensional (3D) distur-

bances that propagate along the attachment line of a

swept Hiemenz flow. With a quasi-parallel base-flow

approximation, the small-amplitude disturbances were

shown to grow and decay in agreement with linear stabil-
ity theory. The true swept Hiemenz base flow leads to a

destabilization of the flow, which agrees with the non-

parallel theory of Hall, Malik, and Poll. Furthermore, the

effect of steady suction and blowing on small-amplitude
disturbances was documented with direct numerical sim-

ulation (DNS). In agreement with the results of Hall,

Malik, and Poll, suction stabilizes and blowing destabi-

lizes the small-amplitude disturbances.

A computational approach was described, which
permits simulations of disturbances that evolve in flows

where the periodic assumption is invalid. Small-

amplitude quasi-two-dimensional disturbances, com-

puted in a quasi-parallel base flow, were shown to grow

and decay in agreement with two-dimensional linear sta-

bility theory. For complete swept Hiemenz flow, the flow
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is destabilized in comparison with those from both linear

stability theory and two-dimensional simulation results.

The neutral-curve location predicted by the nonpar-

allel theory of Hall, Malik, and Poll agreed well with the
three-dimensional simulation results in the limit of infin-

itesimal quasi-two-dimensional disturbances, which

propagate along the attachment line. Furthermore, the

effects of both steady suction and blowing on small-

amplitude disturbances were documented with direct
numerical simulation. In agreement with the results of

Hall, Malik, and Poll, suction damps small-amplitude

disturbances, and blowing amplifies these disturbances.

For the parameter regions studied here, instabilities

that are generated from harmonic sources located off the

attachment line spread both toward and away from the

attachment line. Because of this spreading, energy from
the initial disturbance is transferred to the attachment-

line instabilities; however, suction stabilizes these insta-
bilities. Furthermore, three-dimensional instabilities

were more stable than two-dimensional, or quasi-two-
dimensional, instabilities.

Subcritical nonlinear disturbance growth was

detected with a weakly nonlinear theory and computa-

tions by Hall and Malik. Later, DNS studies by Theofilis
and Jim6nez et al. failed to find this nonlinear distur-

bance growth. The present 2D and 3D simulations have

detected nonlinear subcritical disturbance growth; these

results support the former theoretical and computational

results of Halt and Malik. Based on the present results,

the computations by Theofilis may not have achieved

subcritical growth because the forcing amplitudes were

apparently too small. Furthermore, Jimrnez et al. appar-

ently used a different disturbance pressure form in the

flow-acceleration direction. The present study showed

that this assumed variation in pressure leads to a decay-
ing subcritical mode, which qualitatively agrees with the

results of Jimrnez et al. These results suggest that the

reason for the discrepancy may evidently be attributable
to differing disturbance pressure forms. The 3D DNS

results tend to support the pressure form used by Hall

and Malik for the types of disturbances considered. The

difference in pressure form suggests that for 3D distur-

bances subcritical growth is not assured based on 2D

simulation results and that a full 3D nonlinear study
would be warranted.

Furthermore, the DNS results demonstrate that

steady suction stabilizes the otherwise nonlinearly grow-

ing disturbances. No nonlinear growing disturbances
were detected near branch I of the neutral curve; how-

ever, nonlinear neutral-like states were found near
branch I.

Finally, the simulation results of 3D symmetric and

asymmetric disturbances were shown to be in agreement
with the 2D-eigenvalue calculations of Lin and Malik

and theory of Fedorov.

Although the present study has served to resolve the

previous discrepancy surrounding the subcritical grow-

ing disturbances, the results have not explained the phys-
ics of the flow between the known limit of linear

instability R 0 = 245 and the bypass (or turbulence) limit

of R 0 = 100. The present nonlinear results suggest that
the linear critical Reynolds can be slightly reduced due

to nonlinear effects; however, the true swept-wing

bypass problem likely involves potentially large and
multi-frequency-multi-wave-number 3D disturbances.

Hence, the explanation for bypass transition will involve

these multiple modes, which may be generated off the

attachment line. Furthermore, the fully 3D DNS results

have shown that disturbance packets generated off but

near the attachment line can transfer energy to the attach-

ment-line region.

Hall and Seddougui studied oblique waves and their

interaction in attachment-line flow at the large Reynolds

number limit. They note that close to the attachment line

a small band of destabilized oblique modes appear, inter-
act with the 2D mode, and cause a breakdown of the 2D

mode. Furthermore, Lin and Malik have shown that

many symmetric and asymmetric disturbances exist with
the attachment-line region. Although these symmetric

and asymmetric disturbances are linearly stable in the

subcritical region outlined by Hall and Malik, perhaps

some combination of small (but finite) amplitude distur-

bances may cause catastrophic breakdown scenarios in

the subcritical region. A future study which would

involve multiple combinations of finite-amplitude 2D

and 3D symmetric and asymmetric modes in the subcriti-

cal region may lead to a better understanding of the

Reynolds number region between the linear instability

and point where turbulence is suppressed.

NASA Langley Research Center
Hampton, VA 23681-0001
October 16, 1996
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